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Abstract. In this paper, we report experimental results on a series of high-power rf tests for 
dielectric-loaded accelerating (DLA) structures using a high power X-band Magnicon at the 
Naval Research Laboratory. The dielectric material loaded into this DLA structure is a 
commonly used high-Q ceramic, MgxCa1-xTiO3 (MCT), with a dielectric constant of 20. The 
purpose of these experiments is to study high-power phenomena in the DLA structure.  Two 
important phenomena have been observed during these experiments. First, multipactor effects 
are strongly dependent on the dielectric material used in the DLA structure. In this case, the 
multipactor-induced power absorption threshold and trend to higher power differ when MCT is 
used instead of alumina [1].  Second, although we did not observe dielectric breakdown in the 
bulk dielectric, breakdown occurred at the butt-joint between adjacent dielectric sections in the 
MCT structure.  This occurs because of manufacturing imperfections of the joint that cause large, 
local field enhancements.   

I. INTRODUCTION 

The central motivation for using dielectric-loaded waveguides for charged particle 
acceleration is due to its potential for higher electric field gradient and higher material 
breakdown threshold than conventional metallic accelerator schemes. Significant 
progress has been made in the past on theoretical studies and numerical simulation of 
dielectric-loaded accelerating (DLA) structures and numerous articles have been 
published in this active field [2-7]. However, it is only relatively recently that high 
power experiments using either beam-driven or external rf-driven DLA structures 
have begun in earnest and the results reported [8-10]. 

In this paper, we limit our discussion to external rf-driven traveling wave DLA 
structures, and present some very recent experiment results. 

A modular DLA structure (see Fig. 1) was tested at high power, using 11.424-GHz 
pulsed rf.  It consists of three functional parts: the rf coupler, the tapered dielectric 
matching section, and the constant impedance acceleration section. In principle, the rf 
coupler is a modal converter that converts the dominant mode in rectangular 
waveguide (TE10 mode) to the acceleration mode in the circular waveguide (TM01 
mode) at the rf input end and vice versa for output end. The tapered transition is used 
for impedance matching between the metallic circular waveguide and partially 
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dielectric-loaded acceleration section which employs a dielectric tube to slow down 
the microwave propagating inside the waveguide to the speed of light. The external rf 
pulse is injected into the rectangular waveguide port of the input coupler, through the 
matching section and into the accelerating section where it will transfer energy to 
synchronized particles and then couple out the other end. Potentially, DLA structures 
have a higher breakdown threshold than all-metal disk-loaded waveguide, but that 
threshold certainly depends on the dielectric material chosen. Therefore, we need to 
perform high power rf tests of various DLA structures. 

 
 

 

FIGURE 1.  Mechanic drawing of modular DLA structure which consist of, from left to right, an all-
metal TE-TM input coupler, an input tapered dielectric matching section, a constant radius dielectric 
accelerating section, an output tapered dielectric matching section, and an all-metal TM-TE output 
coupler. 

 
The X-band Magnicon facility, developed at the Naval Research Laboratory [11], is 

working as an external high power 11.424-GHz rf source to feed our DLA structures. 
It can provide pulsed rf signals of greater than ten megawatts and less than 200 -ns 
pulse lengths during the experiments. Figure 2 shows the physical layout and the 
diagnostics used during the high power tests. The Magnicon powers the device under 
test (DLA structure) through WR-90 waveguide. Three bi-directional couplers with 
calibrated crystal detector are installed to monitor the reflected, incident and 
transmitted signals. Meanwhile, four ion pumps are used to monitor pressure during an 
arc and two cameras are used to look for visible light along the axis of the structure 
during an arc from both the upstream and the downstream end. The entire testing 
system is under vacuum at around 10-8 Torr. 

Because of the modular configuration of the DLA structure and the broadband 
nature of the coupler [12], we are able use the same input and output coupler to test 
various DLA structures, thus reducing our fabrication cycle.  We only need to redesign 
and fabricate different matching and acceleration pieces. In this paper, we concentrate 
on the testing results of a magnesium calcium titanate ceramic (MgxCa1-xTiO3, 
abbreviated as MCT) based DLA structure among the series of DLA structure high 
power rf experiment. The results from the other recent high-power test on the alumina-
based structure are presented in [13]. In Section II, we begin by showing the cold test 
results for this MCT-based DLA structure and follow it with a presentation of the high 
power test results in Section III, where arcing was observed at an rf joint. In Section 
IV, we use an electromagnetic model to explain the results observed during the high-
power tests. Finally, we propose a next generation, coaxial-type coupler to eliminate 
the dielectric taper section so that serious dielectric joint arcing can be avoided in the 
future.  
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FIGURE 2.  Experimental setup used to test the DLA structures with high power rf. The X-band 
Magnicon at the Naval Research Laboratory powered a traveling-wave dielectric-loaded accelerating 
structure; three bi-directional couplers were used to detect reflected, incident and transmitted power 
respectively; ion pumps monitored vacuum; and two CCD cameras were installed for observing arcing 
inside the tube. 

II. BENCH TEST FOR MCT BASED DLA STRUCTURE 

In general, DLA structures using high dielectric constant materials will obtain 
higher initial accelerating field for a given incident rf power [2]. For instance, an 
alumina-based DLA structure requires 80 kW of incident power while an MCT-based 
structure needs only 27 kW to sustain a 1 MV/m initial electric field. This is because 
(Table 1) MCT’s dielectric constant (20) is twice as large as Alumina’s (dielectric 
constant 9.4), and the MCT-based DLA structure has a smaller hole size. 
 

TABLE 1. Geometric and physical properties of the 11.424GHz MCT based DLA structure. 
Coefficient Value 
Material MgxCa1-xTiO3
Dielectric Constant 20 
Inner Radius 3 mm 
Outer Radius 4.56 mm 
Center Frequency 11.424 GHz 
R over Q 8756 Ω/m 
Group Velocity 0.057c 
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Before the high power tests at NRL, we measured the S-parameters (Fig. 3) of the 
DLA structure with a network analyzer at ANL. The transmission coefficient, S21, is -
2.4 dB and the reflection coefficient S11 is –10 dB at the frequency 11.427 GHz. 
Considering that there will be different ambient temperature and vacuum condition at 
NRL, these S-parameter curves will shift down a few MHz.  Therefore, these bench 
test results are in good agreement with the high power test results (at 11.424 GHz) as 
shown in the next section. 
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FIGURE 3.  MCT DLA structure bench test results before high power rf test at the Naval Research 
Laboratory. Considering ambient temperature and vacuum effect, S-parameters of this DLA structure is 
S21 = -2.4 dB and S11 = -10 dB respectively. 

III. HIGH POWER RF EXPERIMENT 

We have recently finished the third series of high power rf experiments on the 
MCT-based DLA structure. Here, we will show the newest experimental data. 

Conditioning Process 

The conditioning process started after 72 hours of vacuum pumping, where the 
pressure was in the 10-8 Torr range. Characteristics of the device under test, rf power 
flow transmission and reflection, are shown in Fig. 4(a). The transmission curve S21 
shows an obvious drop off when the incident rf power increases from 150 kW to 600 
kW. At the same time, the reflection curve did not have a corresponding increase. 
Moreover, we observed diffuse, dim light during this period. All these are features of 
the multipactor process for the DLA structure under high power rf conditions [1, 13]. 
As the power was further increase, we observed some arcing around 700 kW incident 
power (corresponding to an accelerating gradient of 5 MV/m) and above, but no 
permanent damage was indicated. Limited by a tight schedule, we stopped 
conditioning at 1.4 MW of incident rf power (equivalent to 7.2 MV/m accelerating 
gradient). 
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                                            (a)                                                                        (b) 
 

FIGURE 4.  (a) Conditioning data for MCT-based DLA structure high power rf test. S21 curve does 
show a multipactor process during the incident power from 150 kW to 600 kW, and we observed 
diffuse light within this period. The arc also has been observed occasionally after incident power 
beyond 700 kW. (b) High power rf testing results of MCT-based DLA structure. Compared to 
conditioning data, the transmission characteristic of the tube after conditioning has changed. It may 
mean that the multipactor process was reduced after conditioning. Permanent arcing occurred at 1 MW 
rf power (6 MV/m accelerating gradient). 

High Power rf testing data 

After conditioning, we repeated the sweep of incident power as shown in Fig. 4(b). 
Interestingly, we observed a transmission curve that is different than the one from the 
conditioning and we didn’t see multipactor light.  However, we did see arcing at 1 
MW of incident power. From the plot, we can see the S21 starts dropping at 600 kW 
incident power, which is much higher than seen during the conditioning process. This 
means the multipactor process might be being reduced by proper rf conditioning. 
However, we did observe a permanent arcing point at 1 MW incident power, which 
corresponds to 6 MV/m at the upstream end.  The rf power applied to that structure 
was stopped at 1.9 MW due to multiple arcing spots that appeared at a dielectric joint 
between the upstream end taper and the uniform acceleration section, and the 
observation of breakdown traces on the oscilloscope. 

. 

IV. LOCAL FIELD ENHANCEMENT BREAKDOWN 

Figure 5(a) gives us a clear image of the arcing-damaged ceramic joint. Radial dark 
marks show the signature of strong electron arcing. In Fig. 5(b), a typical breakdown 
scope trace was recorded when the incident power was raised to 1.9 MW (equivalent 
to over 8 MV/m accelerating gradient). At that moment, the transmitted signal was 
chopped off and a strong reflected signal came out during the second half of the rf 
pulse length.  
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FIGURE 5.  (a) Dielectric breakdown signature observed at the dielectric joint between the upstream 
taper and the acceleration section. (b) Typical breakdown scope trace taken at 1.9 MW incident power 
(8 MV/m accelerating gradient). 

 
Combined with the first two high power tests on the MCT DLA structure, we 

suspect that the breakdown is due to the existence of a vacuum gap in the dielectric 
joint.  Because of the large dielectric constant discontinuity at the joint, it is expected 
to have a strong local field enhancement. Based on the continuity of electric flux, the 
local longitudinal electric field should be enhanced by 20 times compared to the 
normal (joint free) case. For this MCT-based DLA structure, the electric field is 
around 5.7 MV/m (10% power reflection considered) at the upstream end taper when 
1 MW incident power applied. Then, it is estimated that over 100 MV/m E-field 
resides at the edge of the vacuum gap. 

Using Microwave Studio® (Fig. 6), we simulated a 20 µm vacuum gap in the joint 
between the straight and the tapered dielectric tube near the downstream side. The 
numerical simulation results showed that the highest electric field exists at the gap, 
which is around 15 times higher than gapless case (not shown). However, it should be 
pointed out that this electric field enhancement could be higher due to the relatively 
coarse mesh applied to the simulation model (limited by our computer capability). 
This indirectly shows that a MCT-based dielectric-loaded accelerating structure might 
handle 60~80MV/m electric field without breakdown. 

 

MCT 
dielectric

20µm 
vacuum gap 

FIGURE 6. Numerical simulation demonstrates field enhancement in a small vacuum gap. From the 
magnified picture on the left, it shows highest the electric field built up at the small vacuum gap. 
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V. FUTURE WORK 

From the demonstration of both EM simulation and experiment, we believe that 
dielectric joint related arcing is difficult to avoid in the present DLA structure. 
Therefore, instead of using a TE-TM converter [12] plus a dielectric taper matching 
section, we propose a new coaxial-type coupler which can implement TE to TM mode 
conversion through a TEM mode so that mode and impedance transition can be 
achieved simultaneously without using a tapered dielectric (Fig. 7). Simulations show 
that the E-field at any discontinuity inside the new coupler is very low [14], and there 
are no dielectric joints. Therefore, the local field enhancement in the present DLA 
design may be eliminated. 

 

FIGURE 7.  New dielectric-loaded accelerating structure design consists of two coaxial-type couplers 
and one dielectric-loaded accelerating section. 
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